AGRICULTURAL AND FOOD CHEMISTRY

Characterization of Volatiles in Costa Rican Guava [*Psidium friedrichsthalianum* (Berg) Niedenzu] Fruit

Jorge A. Pino,*,[†] Rolando Marbot,[‡] and Carlos Vázquez[§]

Food Industry Research Institute, Carretera del Guatao km 3¹/₂, La Habana 19200, Cuba; National Center for Scientific Research, La Habana, Cuba; and National Botanical Garden, La Habana, Cuba

Volatile compounds were isolated from Costa Rican guava fruit by simultaneous steam distillation solvent extraction according to the Likens—Nickerson method. Compounds were identified by capillary GC-MS and sensorially characterized by sniffing-GC. One hundred and seventy-three components were identified in the aroma concentrate, from which (*E*)- β -caryophyllene, α -terpineol, α -pinene, α -selinene, β -selinene, δ -cadinene, 4,11-selinadiene, and α -copaene were found to be the major constituents. The amounts of aliphatic esters and terpenic compounds were thought to contribute to the unique flavor of this fruit.

KEYWORDS: Volatiles; Costa Rican guava; aliphatic esters; terpenic compounds

INTRODUCTION

Among the many attractive attributes that create demand for fruits from the tropics and subtropics, their characteristic flavor is the most noticeable to consumers. In addition, these fruits are often inexpensive and extremely rich in vitamins and can be used in a wide range of food products.

Psidium friedrichsthalianum (Berg) Niedenzu, commonly named the Costa Rican guava, is a shrub or tree ~ 8 m high, found in forests from Chiapas, Mexico, to Panama, from 90 to 1000 m. It is frequently cultivated for its fruits, which are made into juices, especially in Costa Rica (1, 2). This plant is a member of the same botanical family (Myrtaceae) as guava, and its fruit is often described as being more aromatic than common guava.

Despite the characteristic desirable flavor of this fruit, the chemical composition of the volatile compounds of Costa Rican guava has not previously been the object of study. Different authors (3-6) have analyzed the volatiles of other *Psidium* species, in which terpenoid constituents were found to be dominant. Therefore, in the present study we investigated the volatile flavor constituents of this fruit cultivated in Cuba.

EXPERIMENTAL PROCEDURES

Materials. Fruits were collected mature from the National Botanical Garden near Havana and immediately processed. Diethyl ether was purchased from Merck (Darmstadt, Germany).

Sample Preparation. After addition of an internal standard (methyl undecanoate, 2 mg), pulp (200 g) was blended with distilled water (800 mL), adjusted to pH 7, and simultaneously distilled and extracted for 90 min in a Likens–Nickerson microapparatus with 25 mL of diethyl ether (previously redistilled and checked as to purity). The volatile

concentrate was dried over anhydrous sulfate and concentrated to 0.6 mL on a Kuderna–Danish evaporator with a 12-cm Vigreux column and then to 0.2 mL with a gentle nitrogen stream.

GC and GC-MS Analyses. A Konik 4000A HRGC equipped with a 30 m × 0.25 mm (0.25- μ m film thickness) DB-1 Chrompack fusedsilica capillary column and a flame ionization detector (FID) was used. Injector and detector temperatures were 250 °C. Oven temperature was held at 60 °C for 10 min and then raised to 280 °C at 2 °C/min and held for 40 min. Carrier gas (hydrogen) flow rate was 1 mL/min. These conditions were used for quantitative analysis, by the internal standard method. The recovery of the method was determined by the standard addition technique applied to a sample. The analytes [α -pinene, limonene, ethyl hexanoate, 1-hexanol, (*Z*)-3-hexenol, ethyl octanoate, (*E*)-1-caryophyllene, and α -terpineol] were added at two different concentrations. The average recoveries were ~89–102%, and their relative standard deviations were <1.0%.

GC-MS analyses were done on a Hewlett-Packard model 5890 series II or model 6890 series II GC coupled to an HP 5972 or HP 5973 mass spectrometer. They were fitted with a CP-SIL-5CB Chrompack fused-silica column (50 m \times 0.32 mm, 0.4- μ m film thickness) or an AT-Wax Alltech fused-silica column (60 m \times 0.32 mm, 0.25- μ m film thickness). Temperature programming was performed from 60 °C (10 min) to 280 °C at 3 °C/min and held for 60 min in the apolar column and from 65 °C (10 min) to 250 °C at 2 °C/min and held for 60 min in the polar column. Injector temperature was 250 °C; transfer line temperature, 250 °C; and carrier gas (helium) flow rate, 1 mL/min. Mass spectra were obtained at 70 eV. Linear retention indices were calculated against those of n-paraffins (7). Compounds were identified by comparing their spectra to those of the Wiley library or our IDENT library and also, in many cases, by comparison of their GC Kovats index to those of standard compounds and data from the literature (8, 9)

GC-Sniffing Analysis. Odors of the separated components were assessed at an odor port following GC using a Hewlett-Packard model 5890 series II GC equipped with a thermal conductivity detector (TCD). Separations were done with a methyl siloxane HP-1 fused-silica column (30 cm \times 0.53 mm, 2.65- μ m film thickness). An injector temperature of 250 °C, a detector temperature of 280 °C, and an oven temperature

10.1021/jf011456i CCC: \$22.00 © 2002 American Chemical Society Published on Web 09/11/2002

^{*} Author to whom correspondence should be addressed.

[†] Food Industry Research Institute.

[‡] National Center for Scientific Research.

[§] National Botanical Garden.

Table 1. Volatile Compounds	of Costa Rican Guava
-----------------------------	----------------------

	retention index ^a			concn	odor		retention index ^a			concn	odor
compound	RI_1	RI_2	ID ^b	(ppm)	description	compound	RI_1	RI_2	ID^b	(ppm)	description
ethanol	377	854	А	6.92		α,p-dimethylstyrene	1067	1425	А	0.03	
acetaldehyde	381	669	A	0.11		cis-linalooloxide	1068	1449	А	0.06	
1-propanol ethyl formate	517 530	1026 724	A A	0.07 0.14		(furanoid) terpinolene	1074	1274	А	0.34	
diacetyl	530 538	724 951	A	0.14		propyl hexanoate	1076 1079	1274	A	0.34	
acetic acid	547	1443	Â	0.07	vinegar	2-phenylethanol	1077	1888	Â	0.13	fresh, flowery
ethyl acetate	581	825	А	0.32	estery, fruity	ethyl heptanoate	1082	1324	А	0.03	, , , , , , , , , , , , , , , , , , ,
isobutanol	592	1064	Α	0.27	caramel	nonanal	1085	1381	Α	t	
isopentana	617	864	A	t ^c		linalool	1086	1530	A	0.18	floral
1-butanol	619	1126	A	8.65	winey	α-fenchol	1094	1565	A	0.72	camphoraceous
2-pentanone acetoin	653 667	944 1273	A A	t 0.08		myrcenol methyl octanoate	1100 1109	1381	B A	t 1.09	winey-fruity
ethyl propanoate	681	925	Â	0.00		<i>cis</i> - β -terpineol	1126	1301	Ĉ	0.19	winey-iruity
methyl butanoate	696	955	A	0.04		isoborneol	1138	1633	Ă	0.06	
3-penten-2-one	698		С	0.04		isobutyl hexanoate	1140	1343	Α	0.05	
3-methylbutanol	700	1187	А	1.33	winey	borneol	1151	1680	А	0.61	camphoraceous
	705				alcoholic	terpinen-4-ol	1157	1664	A	0.68	spicy
2-methylbutanol	705 708	774	B C	0.14		<i>p</i> -cymen-8-ol	1158 1166	1829 2042	A	t 0.10	acid ranaid
pentyl methyl ether 1-entanol	708	1238	A	t 0.04		octanoic acid α-terpineol	1100	2042 1679	A A	18.28	acid, rancid floral, citrus
ethyl carbonate	733	1083	ĉ	0.04 t		hexyl butanoate	1775	1405	Â	0.13	noral, ciuus
(E)-3-hexenal	769		č	0.05		butyl hexanoate	1176	1403	A	0.52	fruity
hexanal	772	1062	Ā	0.01		γ -terpineol	1177	-	С	0.20	,
ethyl butanoate	781	1025	Α	4.58	fruity	ethyl octanoate	1181	1425	Α	1.01	fruity-winey
ethyl lactate	787	1333	A	0.04		octyl acetate	1189	1464	A	0.03	
butyl acetate	791	1052	A	0.07	h	3-phenylpropanol	1205	2016	A	0.03	
furfural hexyl methyl ether	795 808	1448 924	A B	1.03 0.41	burnt	2-phenylethyl acetate isopentyl hexanoate	1221 1238	1795 1447	A A	t t	
(<i>E</i>)-3-hexenyl methyl ether	810	974	C	0.41		1-decanol	1258	1744	Â	t	
(Z)-3-hexenyl methyl ether	815	980	Č	0.79		vitispirane	1268	1744	C	0.93	
(É)-2-hexenal	817	1206	Α	0.18		methyl geraniate	1305		В	0.02	
(E)-3-hexenol	823	1364	А	0.15		myrtenyl acetate	1306	1680	С	0.30	
(Z)-3-hexenol	828	1368	A	1.51	green, grassy	α-campholenyl acetate	1317	1 (00	C	0.03	
1-hexanol	849	1343	A	2.33	fruity, grassy	dehydroionene	1335	1682	C	0.09	
<i>m</i> -xylene <i>o</i> -xylene	849 863	1132 1174	B B	0.03 0.03		3-phenylpropyl acetate α-cubebene	1345 1349	1917 1447	A A	t 0.21	
propyl butanoate	865	1117	A	0.03		decanoic acid	1349	2242	Â	0.21	
butyl propanoate	888	1129	A	t		(Z)-3-hexenyl hexanoate	1365	1642	A	0.82	fruity-green
tricyclene	899	949	В	t		α-ylangene	1369	1467	А	0.24	, ,
methyl hexanoate	904	1175	Α	0.10		hexyl hexanoate	1371	1597	A	0.17	
α-thujene	918	1019	B	t		butyl octanoate	1373	1601	A	0.40	
5-methylfurfural benzaldehyde	924 924	1556 1508	A A	0.03 0.03		α -copaene β -bourbonene	1374 1381	1476 1503	A C	10.69 1.00	woody
α-pinene	924 928	1012	A	15.61	terpenic,	ethyl decanoate	1383	1625	A	0.94	
a pinene	720	1012	~	10.01	pine-like	β -elemene	1388	1573	В	1.99	woody
α -fenchene	937	1045	В	0.16		(Z) - β -caryophyllene	1399		С	0.28	, , , , , , , , , , , , , , , , , , ,
camphene	940	1052	А	0.30		(E)- β -caryophyllene	1410	1576	А	35.81	woody-spicy
3-hydroxy-2-pyranone	959	1997	С	0.17		β -cubebene	1426	1524	В	0.47	
2-methyl-6-heptenone	962	1326	A	t		aromadendrene	1437	1589	B	0.58	
β -pinene butyl butanoate	965 978	1091 1207	A A	3.24 0.54	woody	α-hmulene <i>allo</i> -aromadendrene	1443 1457	1651 1627	A B	4.39 0.74	woody
ethyl hexanoate	90	1207	Â	7.49	fruity-winey	4,11-selinadiene	1473	1656	B	10.74	woody
ethyl (E)-3-hexenoate	981	1291	A	t		germacrene D	1476	1684	Ā	0.87	
ethyl (Z)-3-hexenoate	982	1295	А	t		$\check{\beta}$ -selinene	1483	1695	В	11.21	woody
(E)-3-hexenyl acetate	983	1298	A	0.05		α-selinene	1491	1699	В	13.84	woody-spicy
(Z)-3-hexenyl acetate	984	1307	A	0.21	green	α-muurolene	1491	1704	A	0.80	
octanal hexanoic acid	985 988	1275 1825	A A	t 0.10	rancid	β -bisabolene γ -cadinene	1505 1508	1716 1727	A A	0.84 2.44	
α-phellandrene	900 993	1157	A	0.10	Tanciu	<i>trans</i> -calamenene	1508	1802	C	0.67	
α-terpinene	1006	1167	Â	0.23		δ -cadinene	1518	1741	Ă	11.00	dry-woody
<i>p</i> -cymene	1007	1258	A	0.20		zonarene	1518		С	0.45	
octyl methyl ether	1008	1132	С	t		cubenene	1526	1761	С	1.08	
1,4-cineole	1010	1164	A	0.16		α -cadinene	1527	1766	A	0.48	
β -phellandrene	1016	1196	A	0.17		α -calacorene	1530	1888	B	1.18	woody
1,8-cineole limonene	1022 1023	1193 1187	A	0.20 2.13	camphoraceous citrus	(E)-nerolidol dodecanoic acid	1549 1558	2015 2448	A A	0.48 0.11	
(Z) - β -ocimene	1023	1228	A A	2.13 0.03	ulius	caryophyllene formate	1558	2440	C A	0.11 4.94	camphoraceous
2,5-dimethyl-4-methoxy-	1020	1220	B	0.03	caramel	spathulenol	1563	2074	Ă	0.88	sampnoraceous
3(2 <i>H</i>)-furanone			2			(Z)-3-hexenyl	1564	1838	A	0.34	
acetophenone	1030	1643	Α	0.02		octanoate					
(<i>E</i>)- β -ocimene	1037	1244	Α	0.26		hexyl octanoate	1571	1796	Α	0.91	green
isopentyl butanoate	1041	1255 1236	A	0.01		globulol	1573	2064	A	1.25	
		1116	A	0.35		ethyl dodecanoate	1577	1824	Α	0.10	
γ -terpinene	1046					B carvonhullono anovid-	1570	1054	۸		woody color
	1046 1054 1055	1544 1425	A A	0.30		β -caryophyllene epoxide viridiflorol	1578 1583	1954 2041	A A	2.05 2.43	woody-spicy sweet-woody

Table 1. (Continued)

	retentio	retention index ^a		concn	odor		retention index ^a			concn	odor
compound	RI_1	RI_2	ID ^b	(ppm)	description	compound	RI_1	RI_2	ID ^b	(ppm)	description
5-guaien-11-ol	1600	2101	С	1.28		α-bisabolol	1667		С	0.11	
1,4,9-cadalatriene	1607	1962	С	0.78		epi-α-bisabolol	1671		С	0.24	
caryophyllenol	1614	2299	С	0.67		junipercamphor	1678		В	0.04	
cubenol	1619	2015	Α	1.16		aromadendrene oxide	1702		С	0.17	
γ -eudesmol	1620	2136	Α	3.51	sweet-woody	tetradecanoic acid	1743	2624	А	1.35	
, T-muurolol	1622	2154	Α	4.81	woody	octyl octanoate	1767	1998.	А	0.06	
epi-α-cadinol	1628	2198	С	2.86	spicy	pentadecanoic acid	1845	2756	А	0.14	
$\dot{\delta}$ -cadinol	1631	2167	С	2.33	spicy	(Z)-3-hexenyl undecanoate	1860	2125	А	0.10	
T-cadinol	1633	2139	Α	1.44		hexadecanoic acid	1952	2862	А	3.60	waxy
β -eudesmol	1636	2195	Α	0.80		ethyl hexadecanoate	1983	2224	А	0.09	,
5-epi-neointerdeol	1639	2219	С	5.64	woody	fanesyl butanoate	2015		С	0.05	
α -eudesmol	1640	2186	Α	1.00.	5	linoleic acid	2113		А	0.51	
14-hydroxy-9-epi-(<i>E</i>)- caryophyllene	1654		С	0.46		ethyl linoleate	2145	2491	A	0.85	

 a RI₁ and RI₂ = retention indices on CP-SIL-5CB and AT-Wax capillary columns, respectively. b The reliability of the identification proposal is indicated by the following: A, mass spectrum and Kovats index agreed with standards; B, mass spectrum and Kovats index agreed with literature data; C, mass spectrum agreed with mass spectral database. c t = trace (<0.01 ppm).

program of 60–280 °C at 3 °C/min were used. Sample size for each injection was $\sim 0.5-1 \ \mu$ L. Odor assessments were made by one flavorist, who was familiar with tropical fruit flavors.

The coincidence of an identified peak with some odor impression does not imply that this specific compound is solely responsible for the odor. The possibility of an underlying minor component strongly influencing the sensory results can never be ruled out.

RESULTS AND DISCUSSION

The volatile constituents of fresh Costa Rican guava fruit were obtained by simultaneous steam distillation—solvent extraction and analyzed by GC and GC-MS using fused-silica capillary columns. Valid aroma concentrates were prepared by using well-established procedures that have been previously reported (3, 4, 10). In addition, the pH of the sample was adjusted to 7.0 to avoid transformation of terpenoids at the natural pH of the pulp (11). The concentrate was found, on appropriate redilution with water, to possess characteristic fruit aroma.

Table 1 shows the identified compounds and the sensory descriptions of the corresponding peaks at the sniffing port of the GC, according to their order of elution on a CP-SIL-5CB column. Identification of these compounds was based on GC-MS and retention index information on both columns. One hundred and seventy-three volatile compounds were identified for the first time in Costa Rican guava.

A quantitative analysis of the volatile compounds is also shown in **Table 1**. The yield of total volatiles, estimated by the addition of a measured amount of internal standard to the pulp, was 238 mg/kg of fruit pulp (excluding skin and seeds). In comparison with other closely related fruits, this is a high level. Thus, for example, values reported were 35-61 mg/kg for the common guava (3) and 110 mg/kg for strawberry guava (4), using the same isolation procedure.

Among the compounds found in this study, a large number of terpenes and terpenic derivatives were identified. Major constituents were (*E*)- β -caryophyllene, α -terpineol, α -pinene, α -selinene, β -selinene, δ -cadinene, 4,11-selinadiene, and α -copaene. Many of the terpene and terpenic derivatives found in this fruit that are strong contributors to tropical fruit aromas have also been found in a variety of other guava species (3- δ).

The flavor of the Costa Rican guava has been described as sweet with strong fruity, woody-spicy, and floral notes with some green and camphoraceous character. It can be concluded from the results shown in **Table 1** that the aliphatic esters contribute much to its typical flavor. Many of the esters found in this fruit that are strong contributors to tropical fruit aromas have also been found in a variety of other tropical and subtropical fruits. Methyl and ethyl esters similar to those found in this study have been identified as important contributors of tropical fruit flavors in guava (3), strawberry guava (4), papaya (12), acerola (13), passion fruit (15), lulo (15), and soursop (16).

The following compounds are thought to contribute to the complexity of the Costa Rican guava flavor. Fruity notes are due to the presence of many aliphatic esters, whereas floral notes can be attributed to α -terpineol and linalool. Woody and spicy notes can be ascribed to the presence of many sesquiterpenes, particularly (*E*)- β -caryophyllene and its epoxide, whereas green notes are due to (*Z*)-3-hexenol and its esters. The camphoraceous note is due to caryophyllene formate, α -fenchol, 1,8-cineole, and borneol, whereas the pine-like note can be ascribed to the presence of α -pinene.

Although it is well-known that specific odors of pure substances can change when they are mixed, our results suggest that the aliphatic esters and terpenic compounds contribute much to the typical Costa Rican guava flavor. However, it was not possible to find one or more impact compounds.

LITERATURE CITED

- McVaugh, R. Myrtaceae. Flora of Guatemala. Field Mus. Nat. Hist. Publ., Bot. Ser. 1963, 24 (7), 283-405.
- (2) McVaugh, R. Myrtaceae. The Botany of the Guyana Highland Pt. 8. Mem. N. Y. Bot. Gard. 1969, 18 (2), 55–286.
- (3) Pino, J.; Ortega, A.; Rosado, A. Volatile constituents of guava (*Psidium guajava* L.) fruits from Cuba. J. Essent. Oil Res. 1999, 11, 623–628.
- (4) Pino, J. A.; Marbot, R.; Vázquez, C. Characterization of volatiles in strawberry guava (*Psidium cattleianum* Sabine) fruit. *J. Agric. Food Chem.* 2001, 49, 5883–5887.
- (5) Chyau, C.-C.; Chen, S.-Y.; Wu, C.-M. Differences of volatile and nonvolatile contituents between mature and ripe guava (*Psidium guajava* Linn) fruits. J. Agric. Food Chem. **1992**, 40, 846–849.
- (6) Vernin, G.; Vernin, C.; Pierisbattesti, J. C.; Roque, C. Analysis of the volatile compounds of *Psidium cattleianum* Sabine fruit from Reunion Island. *J. Essent. Oil Res.* **1998**, *10*, 353–362.

- (7) Maljat, P.; Erdos, Z.; Takacs, J. Calculation and application of retention indices in programmed temperature gas chromatography. J. Chromatogr. 1974, 91, 89–110.
- (8) MacLafferty, F. W.; Stauffer, D. B. *The Wiley/NBS Registry of Mass Spectral Data*; Wiley: New York, 1989.
- (9) Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing: Carol Stream, IL, 1995.
- (10) Ortega, A.; Pino, J. Volatile components of three cultivars of mango from Cuba. *Nahrung* **1989**, *33*, 709–715.
- (11) Schrefer, P.; Winterhalter, P. Precursors of papaya (*Carica papaya L.*) fruit volatiles. In *Biogeneration of Aromas*; ACS Symposium Series 317; Parliment, T. H., Croteau, R., Eds.; American Chemical Society: Washington, DC, 1986; pp 85–98.
- (12) Shibamoto, T.; Tang, C. S. Minor tropical fruits—mango, papaya, passion fruit and guava. In *Food Flavours. Part C: The Flavour* of *Fruits*; Morton, I. D., MacLeod, A. J., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp 221–280.

- (13) Pino, J.; Marbot, R. Volatile compounds of acerola (*Malphigia emarginata* DC.) fruit. J. Agric. Food Chem. 2001, 49, 5880–5882.
- (14) Werkhoff, P.; Güntert, M.; Krammer, G.; Sommer, H.; Kaulen, J. Vacuum headspace method in aroma research: Flavor chemistry of yellow passion fruits. J. Agric. Food Chem. 1998, 46, 1076–1093.
- (15) Surez, M.; Duque, C Volatile constituents of lulo (Soanum vestissimum D.) fruit. J. Agric. Food Chem. 1991, 39, 1498–1500.
- (16) Young, H.; Paterson, V. The flavour of exotic fruits. In *Food Flavours. Part C: The Flavour of Fruits*; Morton, I. D., MacLeod, A. J., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp 287–325.

Received for review November 2, 2001. Revised manuscript received June 4, 2002. Accepted July 23, 2002.

JF011456I